9 research outputs found

    Evaluating the Use of QoS for Video Delivery in Vehicular Networks

    Get PDF
    In a near future, video transmission capabilities in intelligent vehicular networks will be essential for deploying high-demanded multimedia services for drivers and passengers. Applications and services like video on demand, iTV, context-aware video commercials, touristic information, driving assis-tance, multimedia e-call, etc., will be part of the common multimedia service-set of future transportation systems. However, wireless vehicular networks introduce several constraints that may seriously impact on the final quality of the video content delivery process. Factors like the shared-medium communication model, the limited bandwidth, the unconstrained delays, the signal propagation issues, and the node mobility, will be the ones that will degrade video delivery performance, so it will be a hard task to guarantee the minimum quality of service required by video applications. In this work, we will study how these factors impact on the received video quality by using a detailed simulation model of a urban vehicular network scenario. We will apply different techniques to reduce the video quality degradation produced by the transmission impairments like (a) Intra-refresh video coding modes, (b) frame partitioning (tiles/slices), and (c) quality of service at the Medium Access Control (MAC) level. So, we will learn how these techniques are able to fight against the network impairments produced by the hostile environment typically found in vehicular network scenarios. The experiments were carried out with a simulation environment based on the OMNeT++, Veins and SUMO simulators. Results show that the combination of the proposed techniques significantly improves the robustness of video transmission in vehicular networks, paving the way, with a wise collaboration with other techniques, to achieve a robust video delivery system that supports multimedia applications in future intelligent transportation systems

    A Simulation Tool for Evaluating Video Streaming Architectures in Vehicular Network Scenarios

    Get PDF
    An integrated simulation tool called Video Delivery Simulation Framework over Vehicular Networks (VDSF-VN) is presented. This framework is intended to allow users to conduct experiments related to video transmission in vehicular networks by means of simulation. Research on this topic requires the use of many independent tools, such as traffic and network simulators, intermediate frameworks, video encoders and decoders, converters, platform-dependent scripting languages, data visualisation packages and spreadsheets, and some other tasks are performed manually. The lack of tools necessary to carry out all these tasks in an integrated and efficient way formed the motivation for the development of the VDSF-VN framework. It is managed via two user-friendly applications, GatcomSUMO and GatcomVideo, which allow all the necessary tasks to be accomplished. The first is primarily used to build the network scenario and set up the traffic flows, whereas the second involves the delivery process of the whole video, encoding/decoding video, running simulations, and processing all the experimental results to automatically provide the requested figures, tables and reports. This multiplatform framework is intended to fill the existing gap in this field, and has been successfully used in several experimental tests of vehicular network

    Design and implementation of an efficient hardware integer motion estimator for an HEVC video encoder

    Get PDF
    High-Efficiency Video Coding (HEVC) was developed to improve its predecessor standard, H264/AVC, by doubling its compression efficiency. As in previous standards, Motion Estimation (ME) is one of the encoder critical blocks to achieve significant compression gains. However, it demands an overwhelming complexity cost to accurately remove video temporal redundancy, especially when encoding very high-resolution video sequences. To reduce the overall video encoding time, we propose the implementation of the HEVC ME block in hardware. The proposed architecture is based on (a) a new memory scan order, and (b) a new adder tree structure, which supports asymmetric partitioning modes in a fast and efficient way. The proposed system has been designed in VHDL (VHSIC Hardware Description Language), synthesized and implemented by means of the Xilinx FPGA, Virtex-7 XC7VX550T-3FFG1158. Our design achieves encoding frame rates up to 116 and 30 fps at 2 and 4K video formats, respectively

    On the use of deep learning and parallelism techniques to signifcantly reduce the HEVC intra‑coding time

    Get PDF
    It is well-known that each new video coding standard signifcantly increases in computational complexity with respect to previous standards, and this is particularly true for the HEVC and VVC video coding standards. The development of techniques for reducing the required complexity without afecting the rate/distortion (R/D) performance is therefore always a topic of intense research interest. In this paper, we propose a combination of two powerful techniques, deep learning and parallel computing, to signifcantly reduce the complexity of the HEVC encoding engine. Our experimental results show that a combination of deep learning to reduce the CTU partitioning complexity with parallel strategies based on frame partitioning is able to achieve speedups of up to 26× when 16 threads are used. The R/D penalty in terms of the BD-BR metric depends on the video content, the compression rate and the number of OpenMP threads, and was consistently between 0.35 and 10% for the video sequence test set used in our experiment

    Simulation Framework for Evaluating Video Delivery Services over Vehicular Networks

    Get PDF
    Vehicular Ad-hoc Networks contribute to the Intelligent Transportation Systems by providing a set of services related to traffic, mobility, safe driving, and infotainment applications. One of the most challenging applications is video delivery, since it has to deal with several hurdles typically found in wireless communications, like high node mobility, bandwidth limitations and high loss rates. In this work, we propose an integrated simulation framework that will provide a multilayer view of a particular video delivery session with a bunch of simulation results at physical (i.e., collisions), MAC (i.e., packet delay), application (i.e.,%of lost frames), and user levels (i.e., perceptual video quality). With this tool, we can analyze the performance of video streaming over vehicular networks with a high level of detail, giving us the keys to better understand and, as a consequence, improve video delivery services

    Load Balancing Strategies for Slice-Based Parallel Versions of JEM Video Encoder

    Get PDF
    The proportion of video traffic on the internet is expected to reach 82% by 2022, mainly due to the increasing number of consumers and the emergence of new video formats with more demanding features (depth, resolution, multiview, 360, etc.). Efforts are therefore being made to constantly improve video compression standards to minimize the necessary bandwidth while retaining high video quality levels. In this context, the Joint Collaborative Team on Video Coding has been analyzing new video coding technologies to improve the compression efficiency with respect to the HEVC video coding standard. A software package known as the Joint Exploration Test Model has been proposed to implement and evaluate new video coding tools. In this work, we present parallel versions of the JEM encoder that are particularly suited for shared memory platforms, and can significantly reduce its huge computational complexity. The proposed parallel algorithms are shown to achieve high levels of parallel efficiency. In particular, in the All Intra coding mode, the best of our proposed parallel versions achieves an average efficiency value of 93.4%. They als

    A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders

    Full text link
    [EN] Traditionally, it has been assumed that the compression of the sign of wavelet coefficients is not worth the effort because they form a zero-mean process. However, several image encoders such as JPEG 2000 include sign-coding capabilities. In this paper, we analyze the convenience of including sign-coding techniques into wavelet-based image encoders and propose a methodology that allows the design of sign-prediction tools for whatever kind of wavelet-based encoder. The proposed methodology is based on the use of metaheuristic algorithms to find the best sign prediction with the most appropriate context distribution that maximizes the resulting sign-compression rate of a particular wavelet encoder. Following our proposal, we have designed and implemented a sign-coding module for the LTW wavelet encoder, to evaluate the benefits of the sign-coding tool provided by our proposed methodology. The experimental results show that sign compression can save up to 18.91% of bit-rate when enabling sign-coding capabilities. Also, we have observed two general behaviors when coding the sign of wavelet coefficients: (a) the best results are provided from moderate to high compression rates; and (b) the sign redundancy may be better exploited when working with high-textured images.This research was supported by the Spanish Ministry of Economy and Competitiveness under Grant RTI2018-098156-B-C54, co-financed by FEDER funds (MINECO/FEDER/UE).López-Granado, OM.; Martínez-Rach, MO.; Martí-Campoy, A.; Cruz-Chávez, MA.; Pérez Malumbres, M. (2020). A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders. Electronics. 9(11):1-17. https://doi.org/10.3390/electronics9111899S117911Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243-250. doi:10.1109/76.499834ISO/IEC 15444-1:2019. Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding Systemhttps://www.iso.org/standard/78321.htmlTaubman, D. (2000). High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7), 1158-1170. doi:10.1109/83.847830Bilgin, A., Sementilli, P. J., & Marcellin, M. W. (1999). Progressive image coding using trellis coded quantization. IEEE Transactions on Image Processing, 8(11), 1638-1643. doi:10.1109/83.799891Oliver, J., & Malumbres, M. P. (2006). Low-Complexity Multiresolution Image Compression Using Wavelet Lower Trees. IEEE Transactions on Circuits and Systems for Video Technology, 16(11), 1437-1444. doi:10.1109/tcsvt.2006.883505Cho, Y., & Pearlman, W. A. (2007). Hierarchical Dynamic Range Coding of Wavelet Subbands for Fast and Efficient Image Decompression. IEEE Transactions on Image Processing, 16(8), 2005-2015. doi:10.1109/tip.2007.901247Deever, A. T., & Hemami, S. S. (2003). Efficient sign coding and estimation of zero-quantized coefficients in embedded wavelet image codecs. IEEE Transactions on Image Processing, 12(4), 420-430. doi:10.1109/tip.2003.811499Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710-732. doi:10.1109/34.142909López-Granado, O., Galiano, V., Martí, A., Migallón, H., Martínez-Rach, M., Piñol, P., & Malumbres, M. P. (2013). Improving image compression through the use of evolutionary computing algorithms. Data Management and Security. doi:10.2495/data130041Kodak Lossless True Color Image Suitehttp://r0k.us/graphics/kodak/Rawzor—Lossless Compression Software for Camera Raw Imageshttp://imagecompression.info/test_images

    Optimizing the Transmission of Multimedia Content over Vehicular Networks

    Get PDF
    The multi channel operation mechanism of the IEEE 1609.4 protocol, used in vehicular networks, may impact network performance if applications do not care about its details. Packets delivered from the application layer to the MAC layer during a Control Channel time slot have to wait to be transmitted until the following Service Channel time slot arrives. The accumulation of packets at the beginning of this time slot may introduce additional delays and higher collision rates when packets are transmitted. In this work we propose a method, which we call SkipCCH, that deals with this issue in order to make a better use of the wireless channel and, as a consequence, increase the overall network performance. With our proposal, streaming video in vehicular networks will provide better reconstructed quality at the receiver side under the same network conditions. Furthermore, this method has particularly proven its benefits when working with QoS techniques, not only by increasing the received video quality, but also because it avoids starvation of the lower priority traffic

    Rate-control algorithms for non-embedded wavelet-based image coding

    Full text link
    During the last decade, there has been an increasing interest in the design of very fast wavelet image encoders focused on specific applications like interactive real-time image and video systems, running on power-constrained devices such as digital cameras, mobile phones where coding delay and/or available computing resources (working memory and power processing) are critical for proper operation. In order to reduce complexity, most of these fast wavelet image encoders are non-(SNR)-embedded and as a consequence, precise rate control is not supported. In this work, we propose some simple rate control algorithms for these kind of encoders and we analyze their impact to determine if, despite their inclusion, the global encoder is still competitive with respect to popular embedded encoders like SPIHT and JPEG2000. In this study we focus on the non-embedded LTW encoder, showing that the increase in complexity due to the rate control algorithm inclusion, maintains LTW competitive with respect to SPIHT and JPEG2000 in terms of R/D performance, coding delay and memory consumption. © Springer Science+Business Media, LLC 2011This work was funded by Spanish Ministry of education and Science under grant DPI2007-66796-C03-03.Lopez Granado, OM.; Onofre Martinez-Rach, M.; Pinol Peral, P.; Oliver Gil, JS.; Perez Malumbres, MJ. (2012). Rate-control algorithms for non-embedded wavelet-based image coding. Journal of Signal Processing Systems. 68(2):203-216. https://doi.org/10.1007/s11265-011-0598-6S203216682Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, I. (1992). Image coding using wavelet transform. IEEE Transaction on Image Processing, 1(2), 205–220.Cho, Y., & Pearlman, W.A. (2007). Hierarchical dynamic range coding of wavelet subbands for fast and efficient image compression. IEEE Transactions on Image Processing, 16, 2005–2015.Chrysafis, C., Said, A., Drukarev, A., Islam, A., & Pearlman, W. (2000). SBHP—A low complexity wavelet coder. In IEEE international conference on acoustics, speech and signal processing.CIPR: http://www.cipr.rpi.edu/resource/stills/kodak.html . Center for Image Processing Research.Davis, P. J. (1975) Interpolation and approximation. Dover Publications.Grottke, S., Richter, T., & Seiler, R. (2006). Apriori rate allocation in wavelet-based image compression. In Second international conference on automated production of cross media content for multi-channel distribution, 2006. AXMEDIS ’06 (pp. 329–336). doi: 10.1109/AXMEDIS.2006.12 .Guo, J., Mitra, S., Nutter, B., & Karp, T. (2006). Backward coding of wavelet trees with fine-grained bitrate control. Journal of Computers, 1(4), 1–7. doi: 10.4304/jcp.1.4.1-7 .ISO/IEC 10918-1/ITU-T Recommendation T.81 (1992). Digital compression and coding of continuous-tone still image.ISO/IEC 15444-1 (2000). JPEG2000 image coding system.Kakadu, S. (2006). http://www.kakadusoftware.com .Kasner, J., Marcellin, M., & Hunt, B. (1999). Universal trellis coded quantization. IEEE Transactions on Image Processing, 8(12), 1677–1687. doi: 10.1109/83.806615 .Lancaster, P. (1986). Curve and surface fitting: An introduction. Academic Press.Oliver, J., & Malumbres, M. (2001). A new fast lower-tree wavelet image encoder. In Proceedings of international conference on image processing, 2001 (Vol. 3, pp. 780–783). doi: 10.1109/ICIP.2001.958236 .Oliver, J., & Malumbres, M. P. (2006). Low-complexity multiresolution image compression using wavelet lower trees. IEEE Transactions on Circuits and Systems for Video Technology, 16(11), 1437–1444.Pearlman, W. A. (2001). Trends of tree-based, set partitioning compression techniques in still and moving image systems. In Picture coding symposium.Said, A., & Pearlman, A. (1996). A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits, Systems and Video Technology, 6(3), 243–250.Table Curve 3D 3.0 (1998). http://www.systat.com. Systat Software Inc.Wu, X. (2001). The transform and data compression handbook, chap. Compression of wavelet transform coefficients, (pp. 347–378). CRC Press.Zhidkov, N., & Kobelkov, G. (1987). Numerical methods. Moscow: Nauka
    corecore